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ABSTRACT
We construct a sequence of metric spaces (My) with card M, = n satisfy-
ing that for every ¢ < 2, there exists a real number a(c) > 0 such that, if
the Lipschitz distance from My, to a subset of a Banach space E is less than
¢, then dim(E) > a(c)n. We also prove several results about embeddings
of metric spaces whose non-zero distance values are in the interval {1,2].

1. Introduction

We recall the notion of Lipschitz distance or distortion between two metric spaces
M and N; it is defined as:

dist(M, N) = inf{|| F||Lip/| I~ ||Lip; F' bijective map from M onto N}.

Following Bourgain we will say that two metric spaces M and N are c-lipeomor-
phic if dist(M,N) < c.

Given a real number ¢ > 1 let us define 9 (n) as the least natural number
such that every metric space M of cardinality n is c-lipeomorphic to a subset of
a Banach space E whose dimension is dim(E) < ¢.(n). We are interested in the
asymptotic behavior of 1.(n) as n tends to infinity.

Since every metric space M is isometric to a subset of C(M) it is clear that

Ye(n) < n — 1. Using volume arguments it is easy to prove that t.(n) increases
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at least as clogn; this fact led Johnson and Lindenstrauss [JL] to ask whether
¥e(n) < k(c)logn. Using random graphs Bourgain [B] disproved this conjecture,

K [ logn 2
2 (=52 ) < .
c? (log logn) S ¢eln)

establishing the inequality

Recently, Johnson, Lindenstrauss and Schechtman [JLS] proved that there exists
a constant K such that, for0 < <1,

Yi/p(n) < (B)nP.

Here we are going to prove that for small distortions ¢ we have ¥.(n) ~ n. We
will construct a sequence of metric spaces (M,,), with card M, = n satisfying

the following

THEOREM: For every positive constant ¢ < 2, there exists a(c) > 0, such that if
M,, is c-lipeomorphic to a subset of a Banach space E, then dim(E) > a(c)n.

We also prove that the initial conjecture of Johnson and Lindenstrauss holds
if we deal with metric spaces whose non-zero distance values are in the interval
[1,2]. Indeed we have

THEOREM: Let 1 < d < 2. Then there exists a constant ¢(d) such that every
metric space with n points and whose non-zero distance values are in the interval
[1,d] is isometric to a subset of a Banach space of dimension < c(d)logn.

On the other hand, there exists a sequence of metric spaces (X,) such that:

(1) X, has 2n points.

(2) The non-zero distance values of X,, are in the interval [1,2].

(3) X, is not isometric to any subset of a Banach space of dimension < n — 1.

2. Bounds on the dimension for small distortion

Let = {—1,1}™ endowed with the canonical probability. The space L>(f)
is isometric to £%,, with n = 2™. The Rademacher functions z; € L>®(2) are
the coordinate functions defined on 2. The Walsh functions are the products
24 = [[;cq =i where A C {1,2,...,m}. We can consider these n functions as
elements of L?(§) where this family (z 4) 4 is a complete orthonormal system. In
fact, when we consider §} as a group the Walsh functions are its characters.

We prove first the following property of the Walsh functions:
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PROPOSITION 1: Let 0 < @ < 1 and F C L*() a subspace of dimension q <
a2™. Then there exists a Walsh vector z 4 such that for every z € F

Iz — zalloo > V1~ a.

Proof: We compute the mean of the distances of the points z4 to F. For this

we choose an orthonormal system ey, e3,...,¢, in F. We have

q

da(ca, F)? =1-)  |(za, €)%,

i=1

Then .
Y da(za,F)? =2" =3 "% |(za, e
A A i=1
g
=2" =) Jleflf =2 —q.
i=1
So

1 2 _ q
2m¥d2(xA,F) =15

As we suppose ¢ < a2™, we obtain that the mean is > 1 — a. Hence there exists
a certain z 4 such that d(z4,F) > V1 —a.
It follows that for every space F of dimension ¢ < a2" there exists a point 7 4

in the set of Walsh functions such that

doo(24,F) 2 da(z4,F) > V1 —a. 1

We are now able to prove the main result. We begin by defining the metric
spaces that will play a special role in the proof.
Let n = 2™ and let M3, be the subset of £ consisting of the 3n points

n
yi = 2e4, z; = —2e;, T; = E w; j€;,
i=1

where (e;) is the canonical basis of £3 and (w; ;) is the Walsh matrix, associated
with n = 2™, that is the matrix whose entries are all equal to 1 or —1 and whose
rows are the Walsh system.

For every n, there is only one natural number m such that 3-2™ < n < 3.2m+1
and we can define the metric space M, by adding points to Mj.2m so that all

non-zero distance values of M, are between 1 and 4. These metric spaces satisfy
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THEOREM 2: For every positive constant ¢ < 2, there exists a real number
a(c) > 0, such that if M,, is c-lipeomorphic to a subset of a Banach space E,
then dim(E) > a(c)n.

Proof: Obviously we only need to prove the theorem for M3, being n = 2™.
Let T : M3, — E be a mapping such that

1
~d(z,y) < T2 ~ Tyl < d(zv),

for every pair of points z,y € M, with ¢ < 2 and dimE = k.
Take z} € E*, such that |[z}|| =1 and

c

o3(Ty — Ts) = T~ T 2 § =242 (255).

The dimension k of E is greater than or equal to the rank of the matrix (z}(T'z;)).
This rank changes at most one unit if we subtract (z}(Ty:) + z}(T'2:))/2 from
row :. Each point z; is one unit distant from y; or 2; according to the sign of

w; j. If d(zj,yi) = 1, we have
|z} (Tz; — Tyi)| < d(zj,5:) = 1.

So
e} (Tx;) — (2}(Tyi) + 2 (Tz)) /2

> HW _HTE) oty - atru)l 214+ 255 1= 225

- 2
Analogously, if d(z;,zi) = 1 we obtain

9
73(Te;) = (23(Ty) + 21(Tz) [2 € ~=—.
In the first case, when d(zj,y;) = 1 we have

0 < }(Tz;) — (a7 (Tyi) + =7 (T2)) /2
21 (Ty) = 2i(Tz) 52
5 <

[«

=z;(Tz;) — 2i(Tz) -
and when d(z;, 2;) = 1 we obtain
0 > z}(Tz;) — (27(Twi) + {(T2:)) /2

*(Ty;) — ¥(Tz; 2
= 5}(Te;) - 5i(Ty) + TR HTH) 5 g, 2
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It follows that the entries of the matrix

= (st - HE0LE 21T

have absolute values between (2 — ¢)/c and 3~ 2/c, and the same sign as those of
(wy,;); that is the ||-]co-distance from (w; ;) to A is less than or equal to 2 — 2/ec.
We know, from Proposition 1, that if F is a subspace of dimension ¢ and ¢ < a2™
there exists a vector z4 in the Walsh system such that doo(z4,F) > Vi—a It
follows that

kE+12(1-(2-2/c))n= wn.

c?

3. Metric spaces with restrictions on the distance

We give first a result that allows one to give low-dimensional embeddings of

certain subsets of £2;.

THEOREM 3: Given € > 0, there exists a constant K > 0 such that if M is a
subset of £%, with n points, wheren < m , « > 0, and
(a) the points a; of M have coordinates (a;;)1., satisfying ||(ai;)%yllz < o for
every j,1 < j<m,
(b) 1 < d(z,y) for every pair of different points of M,
then there exists a Banach space E with

dimE < K(e)a?log(1 4+ n)

that contains a subset (1 + ¢€)-lipeomorphic to M.

Proof: Recall the definition of the Kolmogorov numbers of an operator u : X —
Y between two Banach spaces

di(u) = inf{ | Qsu | SCY,dimS <k},

where Qs is the quotient operator from Y to Y/S. For the identity operator
in : €3 — €5, Garnaev and Gluskin [GG] obtained the bound

di(in) < min {1, <CI—(>£%M)I/2} .
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Let b; be the points of £§ whose coordinates are (a; ;),. By condition (a)
we know that ||bjl; < a.

Fix § > 0 and let r be
_a?log(l +n)
T= c26? ’
where c is the constant in the inequality of Garnaev and Gluskin. If k is the least

natural number greater than r, we obtain

Rio>

dk(in) S

This means that there exists a space S of dimension < k (thus < r), and such that
for every unit vector b of £3 there exists a vector v in S satisfying |b — v]|ec <
§/a. So, for every bj, there exists a vector v; such that

b;

s
<=
(2% [a4

oo

That is, for every bj, there exists a vector u; € 8§ such that
IIb; — ujlleo < 6.

If u; = (u;,;)i=;, we have that the points x; of £, with coordinates (u;, ;)7 are

contained in a space of dimension < r and satisfy
ld(xi,x1) — d(a;,as)| < 26.

Since d(x;,xp) 2> 1 for every i # h, the distortion of the mapping that sends a;
to x; is less than (1 4+ 26)/(1 — 28). Finally, if § is small enough, this distortion
is less than 1 4 €. |

From here we can prove the following

COROLLARY 4: Given € > 0, there exists a real number c(¢) > 0 such that for
every metric space M with n points, whose non-zero distance values are in the
interval [1,2], there exists a Banach space E of dimension dim(E) < ¢(¢)logn
that contains a subset (1 + €)-lipeomorphic to M.

Proof: Let 1, z3, ... =, be the n points of M and put m = ('2‘) There
exists an embedding of M into £ defined as follows: For every pair (i,7) of
natural numbers ¢ < j < n put f; ;y(z.) = 0if r ¢ {3,5}, fi jy(z:) = d(zi,z5)/2
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and fq j){z;) = ~d(zi,2;)/2. Finally let f : M — £ be the mapping with
coordinates f(; j). Note that f is an isometry since the non-zero distances of M
are between 1 and 2.

Applying now the above theorem with a = v/2 we obtain the required result.
|

Remark: The non-zero distances of the spaces M,, of Theorem 2 are between
1 and 4. So there exists a space M/, 2-lipeomorphic with M,, and whose non-
zero distances are between 1 and 2. By the Corollary it follows that M,, is
(2 + ¢)-lipeomorphic with a subset of a Banach space of dimension < ¢(¢)log n.
|

There is a problem that arises naturally observing the properties of these

spaces:

PROBLEM: Does there exist a constant a > 0 with the property that for every
real number ¢ > 2 there exists b(c) > 0 such that

Pe(n) < b(c)(logn)®?

By Bourgain’s inequality, this number & must be > 2.
Now we can improve the above Corollary in the following way.

THEOREM 5: Let 1 < d < 2, there exists a constant c¢(d) such that every metric
space with n points whose non-zero distances are in (1, d] embeds isometrically

into a Banach space of dimension < ¢(d)logn.

Proof: Let M be a metric space with n points and consider the embedding into
€7 defined in the proof of Corollary 4. We saw there that there exist functions
h(i,jy such that ||h¢ j)lle < € and the vector space generated by the functions
9Gi,5) = fi,j) + hi,j) is of dimension < c(e)logn.

Consider a pair (i,7) and put ¢ = g(; ;) in order to simplify the notation.
Choose a > 0 so that

lag(zi) — ag(z;)| = d(i, z;).

We claim that ag is a Lipschitz mapping with Lipschitz constant 1, if we choose
e<(2-4d)/8.
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In fact, observe that
llg(xi) —g(z;)| — d(=i,z;)| < 2e.
So

d(zi, ;) ( 2 2
-1 < < .
lg(zi) — 9(=;)| lg(zi) —g(e;)l = 1-2¢

That is |o — 1| < 2¢(1 - 2¢)71. 1t follows that

(1) a<(1-2)7".

To prove that ||ag||Lip = 1 it suffices to prove that |ag(z:) — ag(z)| < d(z;, 2).
As |g(z)| £ € and g(z;) < (d/2) + ¢, we only need

a(g+2e) <1

(1) then leads to the condition

(1—2¢)7" (521- + 2e) <1,

that is equivalent to € < (2 — d)/8. ]

Finally we will prove that the above Theorem cannot be extended to the case
d = 2. We define the metric space X,, as the subset of £% consisting of the basic
vectors e; and the vectors z; = b ~ 2¢;, where b = (1,1,...,1). It is easy to see
that all the distance values are 0, 1 or 2.

THEOREM 6: The metric space X,, cannot be embedded isometrically in a Ba-

nach space of dimension < n — 1.

Proof: Let J: X, — E be an isometric mapping into a Banach space. Then
there exists a linear form z} € E*, with ||zf|| = 1 and such that z}(J(e;) —
J(z;)) = d(ei,z;) = 2. The composition f; = z} o J is a Lipschitz mapping with
Lipschitz constant 1. We know that fi(e;) — fi(zi) = 2 and for every j # ¢
[fi(zi) = file;)I <1, |fi(es) — filej)l S 1.
So the matrix £ e\
( file) - _;)_2_'_>

is the identity matrix and the rank of the matrix (fi(e;)) is greater than or equal
to n — 1; but it is clear that this rank is less than the dimension of E. | |

i,j=1
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