FINITE METRIC SPACES NEEDING HIGH DIMENSION FOR LIPSCHITZ EMBEDDINGS IN BANACH SPACES

BY

JUAN ARIAS-DE-REYNA AND LUIS RODRÍGUEZ-PIAZZA

Departamento de Análisis Matemático Universidad de Sevilla, Apdo. 1160. 41080 Sevilla, Spain

ABSTRACT

We construct a sequence of metric spaces (M_n) with card $M_n = n$ satisfying that for every c < 2, there exists a real number a(c) > 0 such that, if the Lipschitz distance from M_n to a subset of a Banach space E is less than c, then $\dim(E) \ge a(c)n$. We also prove several results about embeddings of metric spaces whose non-zero distance values are in the interval [1,2].

1. Introduction

We recall the notion of Lipschitz distance or distortion between two metric spaces M and N; it is defined as:

 $\operatorname{dist}(\mathbf{M}, \mathbf{N}) = \inf\{\|F\|_{\operatorname{Lip}} \|F^{-1}\|_{\operatorname{Lip}}; F \text{ bijective map from } \mathbf{M} \text{ onto } \mathbf{N}\}.$

Following Bourgain we will say that two metric spaces M and N are c-lipeomorphic if $dist(M, N) \leq c$.

Given a real number $c \ge 1$ let us define $\psi_c(n)$ as the least natural number such that every metric space M of cardinality n is c-lipeomorphic to a subset of a Banach space E whose dimension is $\dim(\mathbf{E}) \le \psi_c(n)$. We are interested in the asymptotic behavior of $\psi_c(n)$ as n tends to infinity.

Since every metric space M is isometric to a subset of $\mathcal{C}(\mathbf{M})$ it is clear that $\psi_c(n) \leq n-1$. Using volume arguments it is easy to prove that $\psi_c(n)$ increases

Received June 3, 1991

at least as $c \log n$; this fact led Johnson and Lindenstrauss [JL] to ask whether $\psi_c(n) \leq k(c) \log n$. Using random graphs Bourgain [B] disproved this conjecture, establishing the inequality

$$\frac{K}{c^2} \left(\frac{\log n}{\log \log n} \right)^2 \le \psi_c(n).$$

Recently, Johnson, Lindenstrauss and Schechtman [JLS] proved that there exists a constant K such that, for $0 < \beta < 1$,

$$\psi_{K/\beta}(n) \leq c(\beta) n^{\beta}.$$

Here we are going to prove that for small distortions c we have $\psi_c(n) \sim n$. We will construct a sequence of metric spaces (\mathbf{M}_n) , with card $\mathbf{M}_n = n$ satisfying the following

THEOREM: For every positive constant c < 2, there exists a(c) > 0, such that if M_n is c-lipeomorphic to a subset of a Banach space E, then dim $(E) \ge a(c)n$.

We also prove that the initial conjecture of Johnson and Lindenstrauss holds if we deal with metric spaces whose non-zero distance values are in the interval [1,2]. Indeed we have

THEOREM: Let $1 \le d < 2$. Then there exists a constant c(d) such that every metric space with n points and whose non-zero distance values are in the interval [1, d] is isometric to a subset of a Banach space of dimension $\le c(d) \log n$.

On the other hand, there exists a sequence of metric spaces (X_n) such that:

- (1) X_n has 2n points.
- (2) The non-zero distance values of X_n are in the interval [1,2].
- (3) X_n is not isometric to any subset of a Banach space of dimension < n-1.

2. Bounds on the dimension for small distortion

Let $\Omega = \{-1,1\}^m$ endowed with the canonical probability. The space $L^{\infty}(\Omega)$ is isometric to ℓ_{∞}^n , with $n = 2^m$. The Rademacher functions $x_i \in L^{\infty}(\Omega)$ are the coordinate functions defined on Ω . The Walsh functions are the products $x_A = \prod_{i \in A} x_i$ where $A \subset \{1, 2, \ldots, m\}$. We can consider these *n* functions as elements of $L^2(\Omega)$ where this family $(x_A)_A$ is a complete orthonormal system. In fact, when we consider Ω as a group the Walsh functions are its characters.

We prove first the following property of the Walsh functions:

FINITE METRIC SPACES

PROPOSITION 1: Let $0 < \alpha < 1$ and $\mathbf{F} \subset L^2(\Omega)$ a subspace of dimension $q < \alpha 2^m$. Then there exists a Walsh vector x_A such that for every $x \in \mathbf{F}$

$$\|x-x_A\|_{\infty} > \sqrt{1-\alpha}.$$

Proof: We compute the mean of the distances of the points x_A to **F**. For this we choose an orthonormal system e_1, e_2, \ldots, e_q in **F**. We have

$$d_2(x_A,\mathbf{F})^2 = 1 - \sum_{i=1}^q |\langle x_A, e_i \rangle|^2.$$

Then

$$\sum_{A} d_2(x_A, \mathbf{F})^2 = 2^m - \sum_{A} \sum_{i=1}^{q} |\langle x_A, e_i \rangle|^2$$
$$= 2^m - \sum_{i=1}^{q} ||e_i||_2^2 = 2^m - q.$$

So

$$\frac{1}{2^m} \sum_A d_2(x_A, \mathbf{F})^2 = 1 - \frac{q}{2^m}.$$

As we suppose $q < \alpha 2^m$, we obtain that the mean is $> 1 - \alpha$. Hence there exists a certain x_A such that $d_2(x_A, \mathbf{F}) > \sqrt{1 - \alpha}$.

It follows that for every space **F** of dimension $q < \alpha 2^n$ there exists a point x_A in the set of Walsh functions such that

$$d_{\infty}(x_A, \mathbf{F}) \ge d_2(x_A, \mathbf{F}) > \sqrt{1 - \alpha}.$$

We are now able to prove the main result. We begin by defining the metric spaces that will play a special role in the proof.

Let $n = 2^m$ and let M_{3n} be the subset of ℓ_{∞}^n consisting of the 3n points

$$y_i = 2e_i, \qquad z_i = -2e_i, \qquad x_j = \sum_{i=1}^n w_{i,j}e_i,$$

where (e_i) is the canonical basis of ℓ_{∞}^n and $(w_{i,j})$ is the Walsh matrix, associated with $n = 2^m$, that is the matrix whose entries are all equal to 1 or -1 and whose rows are the Walsh system.

For every *n*, there is only one natural number *m* such that $3 \cdot 2^m \leq n < 3 \cdot 2^{m+1}$ and we can define the metric space M_n by adding points to $M_{3\cdot 2^m}$ so that all non-zero distance values of M_n are between 1 and 4. These metric spaces satisfy THEOREM 2: For every positive constant c < 2, there exists a real number a(c) > 0, such that if M_n is c-lipeomorphic to a subset of a Banach space E, then $\dim(\mathbf{E}) \ge a(c)n$.

Proof: Obviously we only need to prove the theorem for M_{3n} being $n = 2^m$. Let $T: M_{3n} \to E$ be a mapping such that

$$\frac{1}{c}d(x,y) \leq ||Tx - Ty|| \leq d(x,y),$$

for every pair of points $x, y \in \mathbf{M}$, with c < 2 and dim $\mathbf{E} = k$.

Take $x_i^* \in \mathbf{E}^*$, such that $||x_i^*|| = 1$ and

$$x_i^*(Ty_i - Tz_i) = ||Ty_i - Tz_i|| \ge \frac{4}{c} = 2 + 2\left(\frac{2-c}{c}\right).$$

The dimension k of E is greater than or equal to the rank of the matrix $(x_i^*(Tx_j))$. This rank changes at most one unit if we subtract $(x_i^*(Ty_i) + x_i^*(Tz_i))/2$ from row *i*. Each point x_j is one unit distant from y_i or z_i according to the sign of $w_{i,j}$. If $d(x_j, y_i) = 1$, we have

$$|x_i^*(Tx_j - Ty_i)| \leq d(x_j, y_i) = 1.$$

So

$$\begin{aligned} x_i^*(Tx_j) - \left(x_i^*(Ty_i) + x_i^*(Tz_i)\right)/2 \\ \geq \frac{x_i^*(Ty_i) - x_i^*(Tz_i)}{2} - |x_i^*(Tx_j) - x_i^*(Ty_i)| \geq 1 + \frac{2-c}{c} - 1 = \frac{2-c}{c}.\end{aligned}$$

Analogously, if $d(x_j, z_i) = 1$ we obtain

$$x_i^*(Tx_j) - (x_i^*(Ty_i) + x_i^*(Tz_i))/2 \le -\frac{2-c}{c}$$

In the first case, when $d(x_j, y_i) = 1$ we have

$$0 \le x_i^*(Tx_j) - (x_i^*(Ty_i) + x_i^*(Tz_i))/2$$

= $x_i^*(Tx_j) - x_i^*(Tz_i) - \frac{x_i^*(Ty_i) - x_i^*(Tz_i)}{2} \le 3 - \frac{2}{c}$

and when $d(x_j, z_i) = 1$ we obtain

$$0 \ge x_i^*(Tx_j) - (x_i^*(Ty_i) + x_i^*(Tz_i))/2$$

= $x_i^*(Tx_j) - x_i^*(Ty_i) + \frac{x_i^*(Ty_i) - x_i^*(Tz_i)}{2} \ge -3 + \frac{2}{c}.$

Vol. 79, 1992

It follows that the entries of the matrix

$$A = \left(x_i^*(Tx_j) - \frac{x_i^*(Ty_i) + x_i^*(Tz_i)}{2}\right)$$

have absolute values between (2-c)/c and 3-2/c, and the same sign as those of $(w_{i,j})$; that is the $\|\cdot\|_{\infty}$ -distance from $(w_{i,j})$ to A is less than or equal to 2-2/c. We know, from Proposition 1, that if \mathbf{F} is a subspace of dimension q and $q < \alpha 2^m$ there exists a vector x_A in the Walsh system such that $d_{\infty}(x_A, \mathbf{F}) > \sqrt{1-\alpha}$. It follows that

$$k+1 \ge (1-(2-2/c)^2)n = \frac{(3c-2)(2-c)}{c^2}n.$$

3. Metric spaces with restrictions on the distance

We give first a result that allows one to give low-dimensional embeddings of certain subsets of ℓ_{∞}^{m} .

THEOREM 3: Given $\varepsilon > 0$, there exists a constant K > 0 such that if M is a subset of ℓ_{∞}^m with n points, where $n \leq m$, $\alpha > 0$, and

- (a) the points \mathbf{a}_i of \mathbf{M} have coordinates $(a_{ij})_{j=1}^m$ satisfying $\|(a_{ij})_{i=1}^n\|_2 \leq \alpha$ for every $j, 1 \leq j \leq m$,
- (b) $1 \le d(x, y)$ for every pair of different points of M, then there exists a Banach space E with

$$\dim \mathbf{E} \le K(\varepsilon) \alpha^2 \log(1+n)$$

that contains a subset $(1 + \varepsilon)$ -lipeomorphic to M.

Proof: Recall the definition of the Kolmogorov numbers of an operator $u : \mathbf{X} \to \mathbf{Y}$ between two Banach spaces

$$d_k(u) = \inf \Big\{ \|Q_s u\| \Big| S \subset Y, \dim S < k \Big\},\$$

where Q_s is the quotient operator from Y to Y/S. For the identity operator $i_n: \ell_2^n \to \ell_\infty^n$ Garnaev and Gluskin [GG] obtained the bound

$$d_k(i_n) \leq \min\left\{1, \left(c\frac{\log(1+n/k)}{k}\right)^{1/2}\right\}.$$

Let \mathbf{b}_j be the points of ℓ_2^n whose coordinates are $(a_{i,j})_{i=1}^n$. By condition (a) we know that $\|\mathbf{b}_j\|_2 \leq \alpha$.

Fix $\delta > 0$ and let r be

$$r = \frac{\alpha^2 \log(1+n)}{c^2 \delta^2},$$

where c is the constant in the inequality of Garnaev and Gluskin. If k is the least natural number greater than r, we obtain

$$d_k(i_n) \leq \frac{\delta}{\alpha}.$$

This means that there exists a space S of dimension $\langle k$ (thus $\leq r$), and such that for every unit vector b of ℓ_2^n there exists a vector v in S satisfying $||\mathbf{b} - \mathbf{v}||_{\infty} \leq \delta/\alpha$. So, for every \mathbf{b}_j , there exists a vector \mathbf{v}_j such that

$$\left\|\frac{\mathbf{b}_j}{\alpha} - \mathbf{v}_j\right\|_{\infty} \leq \frac{\delta}{\alpha}$$

That is, for every \mathbf{b}_j , there exists a vector $\mathbf{u}_j \in \mathbf{S}$ such that

$$\|\mathbf{b}_j - \mathbf{u}_j\|_{\infty} \leq \delta.$$

If $\mathbf{u}_j = (u_{i,j})_{i=1}^n$, we have that the points \mathbf{x}_i of ℓ_{∞}^m with coordinates $(u_{i,j})_{j=1}^m$ are contained in a space of dimension $\leq r$ and satisfy

$$|d(\mathbf{x}_i, \mathbf{x}_h) - d(\mathbf{a}_i, \mathbf{a}_h)| \le 2\delta.$$

Since $d(\mathbf{x}_i, \mathbf{x}_h) \geq 1$ for every $i \neq h$, the distortion of the mapping that sends \mathbf{a}_i to \mathbf{x}_i is less than $(1+2\delta)/(1-2\delta)$. Finally, if δ is small enough, this distortion is less than $1+\varepsilon$.

From here we can prove the following

COROLLARY 4: Given $\varepsilon > 0$, there exists a real number $c(\varepsilon) > 0$ such that for every metric space **M** with n points, whose non-zero distance values are in the interval [1,2], there exists a Banach space E of dimension dim (**E**) $\leq c(\varepsilon) \log n$ that contains a subset $(1 + \varepsilon)$ -lipeomorphic to **M**.

Proof: Let x_1, x_2, \ldots, x_n be the *n* points of **M** and put $m = \binom{n}{2}$. There exists an embedding of **M** into ℓ_{∞}^m defined as follows: For every pair (i, j) of natural numbers $i < j \le n$ put $f_{(i,j)}(x_r) = 0$ if $r \notin \{i, j\}, f_{(i,j)}(x_i) = d(x_i, x_j)/2$

and $f_{(i,j)}(x_j) = -d(x_i, x_j)/2$. Finally let $f : \mathbf{M} \to \ell_{\infty}^m$ be the mapping with coordinates $f_{(i,j)}$. Note that f is an isometry since the non-zero distances of \mathbf{M} are between 1 and 2.

Applying now the above theorem with $\alpha = \sqrt{2}$ we obtain the required result.

Remark: The non-zero distances of the spaces M_n of Theorem 2 are between 1 and 4. So there exists a space M'_n 2-lipeomorphic with M_n and whose non-zero distances are between 1 and 2. By the Corollary it follows that M_n is $(2 + \varepsilon)$ -lipeomorphic with a subset of a Banach space of dimension $\leq c(\varepsilon) \log n$.

There is a problem that arises naturally observing the properties of these spaces:

PROBLEM: Does there exist a constant $\alpha > 0$ with the property that for every real number c > 2 there exists b(c) > 0 such that

$$\psi_c(n) \leq b(c)(\log n)^{\alpha}$$
?

By Bourgain's inequality, this number α must be ≥ 2 .

Now we can improve the above Corollary in the following way.

THEOREM 5: Let $1 \le d < 2$, there exists a constant c(d) such that every metric space with n points whose non-zero distances are in [1, d] embeds isometrically into a Banach space of dimension $\le c(d) \log n$.

Proof: Let M be a metric space with n points and consider the embedding into ℓ_{∞}^{m} defined in the proof of Corollary 4. We saw there that there exist functions $h_{(i,j)}$ such that $||h_{(i,j)}||_{\infty} \leq \varepsilon$ and the vector space generated by the functions $g_{(i,j)} = f_{(i,j)} + h_{(i,j)}$ is of dimension $\leq c(\varepsilon) \log n$.

Consider a pair (i, j) and put $g = g_{(i,j)}$ in order to simplify the notation. Choose $\alpha > 0$ so that

$$|\alpha g(x_i) - \alpha g(x_j)| = d(x_i, x_j).$$

We claim that αg is a Lipschitz mapping with Lipschitz constant 1, if we choose $\varepsilon < (2-d)/8$.

In fact, observe that

$$||g(x_i)-g(x_j)|-d(x_i,x_j)| \leq 2\varepsilon.$$

So

$$\left|\frac{d(x_i, x_j)}{|g(x_i) - g(x_j)|} - 1\right| \leq \frac{2\varepsilon}{|g(x_i) - g(x_j)|} \leq \frac{2\varepsilon}{1 - 2\varepsilon}.$$

That is $|\alpha - 1| < 2\varepsilon(1 - 2\varepsilon)^{-1}$. It follows that

(1)
$$\alpha < (1-2\varepsilon)^{-1}.$$

To prove that $\|\alpha g\|_{\text{Lip}} = 1$ it suffices to prove that $|\alpha g(x_i) - \alpha g(z)| \le d(x_i, z)$. As $|g(z)| \le \varepsilon$ and $g(x_i) \le (d/2) + \varepsilon$, we only need

$$\alpha\left(\frac{d}{2}+2\varepsilon\right)<1.$$

(1) then leads to the condition

$$(1-2\varepsilon)^{-1}\left(\frac{d}{2}+2\varepsilon\right)<1,$$

that is equivalent to $\varepsilon < (2-d)/8$.

Finally we will prove that the above Theorem cannot be extended to the case d = 2. We define the metric space X_n as the subset of ℓ_{∞}^n consisting of the basic vectors e_i and the vectors $x_i = b - 2e_i$, where b = (1, 1, ..., 1). It is easy to see that all the distance values are 0, 1 or 2.

THEOREM 6: The metric space X_n cannot be embedded isometrically in a Banach space of dimension < n - 1.

Proof: Let $J : \mathbf{X}_n \to \mathbf{E}$ be an isometric mapping into a Banach space. Then there exists a linear form $x_i^* \in \mathbf{E}^*$, with $||x_i^*|| = 1$ and such that $x_i^*(J(e_i) - J(x_i)) = d(e_i, x_i) = 2$. The composition $f_i = x_i^* \circ J$ is a Lipschitz mapping with Lipschitz constant 1. We know that $f_i(e_i) - f_i(x_i) = 2$ and for every $j \neq i$

$$|f_i(x_i) - f_i(e_j)| \le 1, \qquad |f_i(e_i) - f_i(e_j)| \le 1.$$

So the matrix

$$\left(f_i(e_j) - \frac{f_i(x_i) + f_i(e_i)}{2}\right)_{i,j=1}^n$$

is the identity matrix and the rank of the matrix $(f_i(e_j))$ is greater than or equal to n-1; but it is clear that this rank is less than the dimension of **E**.

110

References

- [B] J. Bourgain, On Lipschitz embedding of finite metric spaces in Hilbert space, Isr. J. Math. 52 (1985), 46-52.
- [GG] A. Yu. Garnaev and E. D. Gluskin, On width of the euclidean ball, Soviet Math. Dokl. 30 (1984), 200-204.
- [JL] W. B. Johnson and J. Lindenstrauss, Extension of Lipschitz mappings into a Hilbert space, Contemp. Math. 26 (1984), 189-206.
- [JLS] W. B. Johnson, J. Lindenstrauss and G. Schechtman, On Lipschitz embedding of finite metric spaces in low dimensional normed spaces, in Geometric Aspects of Functional Analysis, Israel Seminar 1985-86, Lecture Notes in Math. 1267, Springer, New York, 1987, pp. 177-184.