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A B S T R A C T  

We construct a sequence of metric spaces (M~) with card M,~ = n satisfy- 

ing that for every c < 2, there exists a real number a(c) > 0 such that, if 

the Lipschitz distance from M~ to a subset of a Banach space E is less than 

c, then dim(E) > a(c)n. We also prove several results about embeddings 

of metric spaces whose non-zero distance values are in the interval [1,2]. 

1 .  I n t r o d u c t i o n  

We recall the notion of Lipschitz distance or distortion between two metric spaces 

M and N; it is defined as: 

dist(M, N)  = inf{llFllLipllf -lllaip; F bijective map from M onto N}. 

Following Bourgain we will say that two metric spaces M and N are c-lipeomor- 

phic if dist(M, N) _< c. 

Given a real number c > 1 let us define Co(n) as the least natural  number 

such that every metric space M of cardinality n is c-lipeomorphic to a subset of 

a Banach space E whose dimension is dim(E) < Co(n). We are interested in the 

asymptotic behavior of ¢~(n) as n tends to infinity. 

Since every metric space M is isometric to a subset of C(M) it is clear that 

¢¢(n) < n - 1. Using volume arguments it is easy to prove that Co(n) increases 
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at least as c logn;  this fact led Johnson and Lindenstrauss [JL] to ask whether 

Ce(n) _< k(c) log n. Using random graphs Bourgain [B] disproved this conjecture, 

establishing the inequality 

g : logn ' ~ <  
Co(n). 

c 2 k, log log n ] - 

Recently, Johnson, Lindenstrauss and Schechtman [JLS] proved that there exists 

a constant K such that,  for 0 < fl < 1, 

CK/~(n) < cO),:.  

Here we are going to prove that for small distortions c we have Co(n) "~ n. We 

will construct a sequence of metric spaces ( M , ) ,  with ca rdMn = n satisfying 

the following 

THEOREM: For every positive constant c < 2, there exists a(c) > O, such that if 

M,, is c-lipeomorphic to a subset of a Banach space E, then dim(E) ~ a(c)n. 

We also prove that the initial conjecture of Johnson and Lindenstrauss holds 

if we deal with metric spaces whose non-zero distance values are in the interval 

[1, 2]. Indeed we have 

THEOREM: Let 1 ~_ d < 2. Then there exists a constant c(d) such that every 

metric space with n points and whose non-zero distance values axe in the interval 

[1, d] is isometric to a subset of a Banach space of dimension <_ c(d)log n. 

On the other hand, there exists a sequence of metric spaces (Xn) such that: 

(1) Xn  has 2n points. 

(2) The non-zero distance values of X,, are in the interval [1, 2]. 

(3) Xn is not isometric to any subset of a Banaeh space of dimension < n - 1. 

2. B o u n d s  on  t he  d i m e n s i o n  for smal l  d i s tor t ion  

Let 12 = { -1 ,  1} m endowed with the canonical probability. The space L°°(12) 

is isometric to g~,  with n = 2 m. The Rademacher functions xi E L°°(12) are 

the coordinate functions defined on g/. The Walsh functions are the products 

xa = rLeAXi  where A C {1 ,2 , . . . , rn} .  We can consider these n functions as 

elements of L2(~) where this family (XA) a i s  a complete orthonormal system. In 

fact, when we consider ~ as a group the Walsh functions are its characters. 

We prove first the following property of the Walsh functions: 
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PROPOSITION 1: Let 0 < ~ < 1 and F C L2(~) a subspace of  dimension q < 

a 2 " .  Then there exists a Walsh vector XA such that for every x E F 

Proof." We compute the mean of the distances of the points XA to F. For this 

we choose an orthonormal system el, e2 , . . . ,  eq in F. We have 

q 

a (xA, r )  = 1 - 
i----1 

Then 

So 

d2(xA'F)2 = 2m -- ~ E I(XA'e')]2 
A A i----1 

q 

= 2 " - -  ~ Heill2 2 = 2 m - - q .  

i=1 

1 q 
2--z d (xA,F) = 1 2 "  

A 

As we suppose q < a2 m, we obtain that the mean is > 1 - a. Hence there exists 

a certain XA such that d2(xA, F) > ~/1 - ~. 

It follows that for every space F of dimension q < t~2 n there exists a point XA 

in the set of Walsh functions such that 

doo(XA, F) _> d2(xA, F) > x/1 - a. | 

We are now able to prove the main result. We begin by defining the metric 

spaces that will play a special role in the proof. 

Let rt = 2 m and let M3,, be the subset of f~o consisting of the 3n points 

n 

Yi = 2ei, zi = --2ei, xj  = ~ wi,jei, 
i=1 

where ( e i )  is the canonical basis of g~o and (wi,j) is the Walsh matrix, associated 

with n = 2 m, that is the matrix whose entries are all equal to 1 or - 1  and whose 

rows are the Walsh system. 

For every n, there is only one natural number m such that 3 . 2 "  < n < 3.2 "+1 

and we can define the metric space Mn by adding points to M3.2., so that all 

non-zero distance values of Mn are between 1 and 4. These metric spaces satisfy 
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THEOREM 2: For every pos i t i v e  cons tan t  c < 2, there ex i s t s  a tea/ number  

a(c)  > O, such  tha t  i f  M n  is c - l ipeomorpbJc  to a subse t  o f  a B a n a c h  space  E ,  

then dim(E)  >_ a(c)n. 

Proof' .  Obviously we only need to prove the theorem for Man being n = 2 m. 

Let T : M a n  ~ E b e  a mapping such that  

!d (x ,  u) -< IlYx - Tyll < d(x, y), 
c 

for every pair of points x , y  E M, with c < 2 and d i m e  = k. 

Take x* • E*, such that  IIx* I1 = 1 and 

x , (  y+ - T z ~ )  = tlTy~ - Tz+ll  > - = 2 + 2 
c 

The dimension k of E is greater than or equal to the rank of the matr ix  ( x * ( T x i ) ) .  

This rank changes at most one unit if we subtract  ( x * ( T y i )  + x * ( T z i ) ) / 2  from 

row i. Each point x j  is one unit distant from Yi or zi according to the sign of 

wi, j .  If d ( x i , y i  ) = 1, we have 

I x * ( T x j  - T y i ) l  _< d ( x j , y i )  = 1. 

So 
x * ( T x j )  - ( x * ( T y i )  + x * ( T z i ) ) / 2  

> x * ( T y i )  - x * ( T z i )  2 - c 
- 2 - I z * ( T x ~ )  - x*(Ty,)l >_ 1 + --c 

Analogously, if d ( x i ,  z i )  = 1 we obtain 

_ - -  2 - c  

x * ( T x j )  - ( x * ( T y i )  + x * ( T z i ) )  / 2  <_ - - -  
2 - c  

In the first case, when d ( x i ,  yi) = 1 we have 

0 <_ x * ( T x j )  - ( x * ( T y i )  + x ~ ( T z i ) ) / 2  

= x * ( T x i )  - x * ( T z i )  - x;(Ty,)-'--" -- x ~ ( T z i )  < 3 - 2_ 
2 - c 

and when d ( x j ,  zi) = 1 we obtain 

0 > x * ( T x j )  - ( x * ( T y i )  + x * ( T z i ) ) / 2  

* ( T v ~  - x i* ( T z i )  2 
= x * ( T x j )  - x T ( T y i  ) + x i  , - ~ i ,  > - 3  + - .  

2 - c 
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It follows that  the entries of the matrix 

A = (x*(Txj) - x*(Tyi) +2 xT(Tzi)) 

have absolute values between (2 - c)/c and 3 - 2/c, and the same sign as those of 

(w~,j); that is the H~-distanee from (w~,i) to A is less than or equal to 2 -  2/c. 

We know, from Proposition 1, that if F is a subspace of dimension q and q < a2 m 
there exists a vector xA in the Walsh system such that d~(zA,F) > ~/1 - a. It 

follows that 

k + I > (I - (2 - 21c)2)n = (3c - 2)(2 - e)n 
- -  C 2 " 

3. Metr i c  spaces  w i t h  res tr ic t ions  on  the  d i s tance  

We give first a result that allows one to give low-dimensional embeddings of 

certain subsets of ~o~. 

THEOREM 3: Given ~ > O, there exists a constant K > 0 such that if M is a 
subset o f ~  with n points, where n < m , a > 0, and 

m a rt (a) the points a~ of M have coordinates (aii)j=l satisfying II( ~j)~=1112 < ~ for  

every j ,  I < j < m, 
(b) 1 < d(x,y)/ 'or  every pair of different points of M, 

then there exists a Banach space E with 

d i m e  _< K(~)a 2 log(l + n) 

that contains a subset (1 + e)-lipeomorphic to M. 

Proof." Recall the definition of the Kolmogorov numbers of an operator u : X 

Y between two Banach spaces 

dk(u) = inf{][Osu][ [ S c Y, d i m S <  k}, 

where Qs is the quotient operator from Y to Y/S .  For the identity operator 

i ,  : t~' --* ~ Garnaev and Gluskin [GG] obtained the bound 

{ { l ° g ( l + n / k ) )  1/2} 
dk(i,) < rain 1, ~c k 
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• . B Let bj  be the points of g~' whose coordinates are (a,o)i= 1. By condition (a) 

we know that Ilbi[12 < ~ .  

Fix 6 > 0 and let r be 
a 2 log O + n) r.m--- 

C262 

where c is the constant in the inequality of Garnaev and Gluskin. If k is the least 

natural  number greater than r, we obtain 

6 
, t~(i . )  < - .  

ot 

This means that there exists a space S of dimension < k (thus < r), and such that  

for every unit vector b of g~' there exists a vector v in S satisfying l i b  - v l l o o  _< 

6/0~. So, for every bj ,  there exists a vector v i such that 

II - v i _< - 

That  is, for every bj ,  there exists a vector u i E S such that  

l ib  i - u i l l o o  < 6. 

• , 7 1  . . F / ~  If uj  = (u,j)i=1, we have that the points xi of g~ with coordinates (u, , j) j=l are 

contained in a space of dimension _< r and satisfy 

[d(xi,xn) - d(ai ,aa)[ < 26. 

Since d(x i ,xh)  > 1 for every i # h, the distortion of the mapping that  sends ai 

to xi is less than (1 + 26)/(1 - 26). Finally, if 6 is small enough, this distortion 

is less than 1 + e. I 

From here we can prove the following 

COROLLARY 4: Given e > O, there exists a t e a /n u m b er  c(e) > 0 such that for 

every metric space M with n points, whose non-zero distance va/ues are in the 

interval [1, 21, there exists a Banach space E of dimension dim (E) < c(e) log n 

that contains a subset (1 + e)-lipeomorphic to M. 

Proof." Let Zl, z2, . . .  z,, be the n points of M and put m = (i)" There 

exists an embedding of M into g~ defined as follows: For every pair ( i , j )  of 

natural numbers i < j < n put f ( i j ) (zr)  = 0 if r q~ { i , j } ,  f ( i j ) (z i )  = d ( z i , z i ) / 2  
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and f ( i s ) (x j )  = - d ( x i , x j ) / 2 .  Finally let f : M --, £~0 be the mapping with 

coordinates f(iS). Note that f is an isometry since the non-zero distances of M 

are between 1 and 2. 

Applying now the above theorem with (~ = vf2 we obtain the required result. 

| 

Remark: The non-zero distances of the spaces Mn of Theorem 2 are between 

1 and 4. So there exists a space M~ 2-1ipeomorphic with Mn and whose non- 

zero distances are between 1 and 2. By the Corollary it follows that M ,  is 

(2 + e)-lipeomorphic with a subset of a Banach space of dimension _< e(e) log n. 

I 

There is a problem that arises naturally observing the properties of these 

spaces: 

PROBLEM: Does there exist a constant a > 0 with the property that for every 

reed number c > 2 there exists b(c) > 0 such that 

¢c(.)  < b(c)(log n)o? 

By Bourgaln's inequality, this number a must be _> 2. 

Now we can improve the above Corollary in the following way. 

THEOREM 5: Let 1 < d < 2, there exists a constant c(d) such that every metric 

space with n points whose non-zero distances are in [1, d] embeds isometrically 

into a Banach space o~ dimension ~_ c( d) log n. 

Proof: Let M be a metric space with n points and consider the embedding into 

~o~ defined in the proof of Corollary 4. We saw there that there exist functions 

h(is) such that IIh(i,i)lloo < e and the vector space generated by the functions 

g(is) = f(i,D + h(i,j) is of dimension <_ c(e)log n. 

Consider a pair ( i , j )  and put g = g(is) in order to simplify the notation. 

Choose a > 0 so that 

[ a g ( x i )  - ~g(xi)[ -- d(xi, xi). 

We claim that ag is a Lipschitz mapping with Lipschitz constant 1, if we choose 

< (2  - d ) / S .  
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So 

In fact, observe that 

[Ig@i)- g(x./)l- d(zi,xi)[ _< 2e. 

I d(xi, x j) I 2~ 2~ 
Ig ( ;d ) -~ -~ i ) l - 1  < Ig(x,)-g(xi)l  < 1-2-----;" 

That is la  - 11 < 2¢(1 - 2~) -1 . It follows that 

( 1 )  ,~ < (x  - 2 ~ )  - 1  . 

To prove that IlagllLi p = 1 it suffices to prove that lag(x,) - ag(z)[ <_ d ( z i ,  z ) .  

As Ig(z)l < ~ and g(xi) < (d/2) + e, we only need  

(1) then leads to the condition 

( 1 -  2e ) - '  ( d  + 2 e )  < 1, 

that is equivalent to ¢ < (2 - d) /8 .  II 

Finally we will prove that the above Theorem cannot be extended to the case 

d = 2. We define the metric space Xn as the subset o f / ~  consisting of the basic 

vectors ei and the vectors xi  = b - 2ei, where b = ( 1 , 1 , . . . ,  1). It is easy to see 

that  all the distance values are 0, 1 or 2. 

THEOREM 6: T h e  m e t r i c  space  X n  canno t  be e m b e d d e d  i s o m e t r i c M l y  in a Ba-  

nach  space  o f  d i m e n s i o n  < n - 1. 

Proof :  Let J : Xn ~ E be an isometric mapping into a Banach space. Then 

there exists a linear form x~ E E*, with Ilx*][ = 1 and such that x * ( J ( e i )  - 

J(x i ) )  = d(ei, xi) = 2. The composition fi = z* o J is a Lipschitz mapping with 

Lipschitz constant 1. We know that fi(ei) - f i ( x i )  = 2 and for every j # i 

I f i (x~)-  f i (ej ) l  < 1, If~(e,)- f i (ej ) l  < 1. 

is the identity matrix and the rank of the matrix (f i (ei))  is greater than or equal 

to n - 1; but it is clear that this rank is less than the dimension of E. II 

So the matrix 
(fi(ej)_ fi(xi) + fi(ei)~ n 

'/i,j--1 
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